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1. INTRODUCTION

A powerful generalization of the Riemann integral has been introduced by
making an innocent-looking modification in the usual definition. This
generalized Riemann integral was defined in 1957 by Kurzweil [6]. It was
independently defined and extensively studied and generalized by
Henstock [3-5] who called it the Riemann-complete integral. Although this
integral has been popularized somewhat (cf. [7]), it still is not as well known

'as it deserves to be. Among the virtues of this powerful integral are the
following:

(I) Every Lebesgue integrable function is generalized Riemann
integrable and the values of the integrals are the same. The same holds for
functions integrable in several other senses.

(2) The monotone and dominated convergence theorems of the
Lebesgue theory can be stated so as to hold for the generalized Riemann
integral.

(3) Improper Riemann integrals are "proper" generalized Riemann
integrals.

(4) If f' exists throughout [a, b], then it is generalized Riemann
integrable on [a, b] and the value of the integral is f(b) - f(a).

Unaware of the generalized Riemann integral, Haber and Shisha [1, 2]
defined and studied tbe "simple integral" and Osgood and Shisha [10, 11]
defined and studied the "dominated integral". The aims in forming these
concepts were (i) to replace the improper Riemann integrals, which are
iterated limits, by single limits and (ii) to allow a wide use of standard
quadrature formulas in the evaluation of singular integrals. In Sections 2 and
3 we shall show how the simple and dominated integrals fit into the
framework of the generalized Riemann integral in a natural and very simple
way. In Section 4 analogous results are obtained for the improper Riemann
integrals.
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2. DEFINITION OF THE GENERALIZED RIEMANN INTEGRAL;
CONNECTION WITH THE DOMINATED INTEGRAL

193

DEFINITION 1 (cf. [5, p. 82 J). A real function J is generalized Riemann
integrable on la, b} (-(1) <a <b < (1) iff it is defined there and there is a
real number I with the following property: For each c> 0 there is a positive
function 6e(t) on [a, b} such that II - LZ~) J(tk)(Xk - xk_ )1 < c whenever
a = Xo< ... < xn = band Xk- 1 ::;;; tk ::;;; xk' xk - Xk _ 1 <6e(tk) for k = 1,... , n. If
such an I exists it is unique and is called the generalized Riemann integral of
Jon [a,b}.

Notice that if, for every c > 0, 6e(t) is a constant ce' then generalized
Riemann integrability on [a, b} is precisely (proper) Riemann integrability
there. Suppose a = 0, b = 1. We show that when 6eCt) is retricted to be a
linear function: 6e(t) = c(e)t, 0 < t::;;; 1, then generalized Riemann
integrability is equivalent to dominant integrability. First, we state the
definition of the dominated integral; this was formulated with a function
unbounded near zero in mind.

DEFINITION 2 [10}. A real functionJon (0,1] is dominantly integrable
iff there is a real number I with the following property:

For each e >0 there are numbers LI(e) and
0< LI(e) < 1,0 < If/(e) < 1 such that

1
1 - kt2 J(tk)(Xk-Xk- I )/ <e

whenever 0 < x) < ... < x n = 1, Xl < If/(e), and
Xk_l/Xk > 1 - LI(e) for k = 2,... , n.

~(,) withI
(1)

If there is such an I it is unique and is called the dominated integral off

THEOREM 1. Let J be a realJunction on (0, 1] and define J(O) = O. Then
f is dominantly integrable iff there is a real number I with the following
property:

For each e> 0 there are positive numbers cl(e) and c2(e) such
that, defining

6e<t) = c)(e)t,

= c2(e),

if O<t::;;;l,

if t = 0,

(2)
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we have

whenever 0 = Xo<XI < <Xn = 1 and
xk - Xk_1 <oitk)!or k = 1, , n.

Proof (:::> ) Assume (1) and define for every e > 0,

oit) = <1 (e)t,

= I/I(e),

if 0 < t ~ 1,

if t= O.

Given e>O, let O=xo<xl <···<xn =1 and Xk_l~tk~xk'

xk - xk_1 < oitk) for k = 1,..., n. Then for all 2 ~ k ~ n,
xk - Xk_1< <1 (e) tk~ <1 (e) xk and hence Xk_I/Xk > 1 - <1(e). Also o.(t1) >
xI-XO=xI~tl~<1(e)tl and so t 1 =0 and o.(tI)=I/I(e). Thus x 1=
XI -xo < I/I(e) and by (1),

II - tl !(tk)(Xk- Xk_l) I= I1- t2 !(tk)(Xk- Xk_I)/ < e.

(~) Assume (2) and define for every e > 0, I/I(e) = min{cie), ~}, <1(e) =
cl (e)/(1 + cl(e» so that 0 < I/I(e) < 1, 0 <<1 (e) < 1. Given e > 0, let
o<XI < '" <xn = 1, XI < I/I(e) and Xk_1 ~tk~Xk' Xk~I/Xk > l-<1(e) for
k = 2,... , n. Defining Xo= 0 and t l = 0, we have Xl - Xo< I/I(e) ~ c2(e) =
o.(t l ). Also if 2 ~ k ~ n, then Xk_1> (1 -<1(e»xk and hence

<1 (e) <1 (e)
xk-Xk_1 <<1(e)xk < 1-<1(e) Xk_1~ 1 -<1(e) tk= c1(e) tk= ojJx).

Hence by (2), II-LZ=2!(tk)(Xk-Xk-I)!=II-LZ=1!(tk)(Xk-Xk_I)!<e
and so! is dominantly integrable. This completes the proof.

3. CONNECTION WITH THE SIMPLE INTEGRAL

The simple integral was defined for real functions on [0, co). For
comparison, we now define the generalized Riemann integral on [0, co) by
modifying slightly the finite interval definition.

DEFINITION 3 (cf. [5, p. 83]). A real function! is generalized Riemann
integrable on [0, co) iff it is defined there and there is a real number I with
the following property:
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For each e >°there is a real positive function be(t) on [0, (0)
and a positive number B(e) such that

whenever O=xo<"'<xn, xn>B(e) and Xk_1<tk<Xk,
Xk - Xk- 1< be(tk) for k = 1,... , n.
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When, for every e >0, be(t) is a constant ce' then generalized Riemann
integrability on [0, (0) is precisely simple integrability defined in [1,2].
Hence the relationship of simple integrability to generalized Riemann
integrability on [0, (0) is the same as the relationship of (proper) Riemann
integrability to generalized Riemann integrability on intervals [a, b],
-00 <a < b < 00. Thus from the point of view of the generalized Riemann
integral, the simple integral rather than the Riemann improper integral seems
to be the natural extension of the Riemann integral to [0, (0).

4. CONNECTION WITH IMPROPER RIEMANN INTEGRALS

In this section we characterize the improperly Riemann integrable
functions as those functions which are generalized Riemann integrable with a
monotone function be(t) for every fixed e >0. As is customary we say a real
function f defined on (a, b], with -00 <a <b < 00, is improperly Riemann
integrable on (a, b] iff f is Riemann integrable on [s, b] for each s with
a < s < b, and lims ....., + f~ f exists (finite), in which case we denote the limit
f~f

The following simple but fundamental result will be useful:

HENSTOCK'S LEMMA (cf. [5, Theorem 5]). Let a real function f be
generalized Riemann integrable on [a, b], -00 <a <b < 00, let e >°be
given and let be(t) be as in Definition 1. If a = Xo< ... < xn= b; Xk- 1<
tk<Xk' xk - Xk_ 1 <be(tk) for k = 1,2,..., n, and N is a subset of {I, 2,..., n},
then

(For k = 1,2,..., n, f~:_.J denotes the generalized Riemann integral which
necessarily exists for k = I, 2,..., n. An"empty sum" is 0.)
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THEOREM 2. Let f be a real function on (a, b] with -00 < a < b < 00

and define f(a) = O. Then f is improperly Riemann integrable on (a, b] iff
there is a real number I with the following property:

For each e > 0 there is a.. positive function JeCt) on [a, b] which is I·

nondecreasing on (a, b] and such that

II-k~lf(tk)(Xk-Xk-l)l<e .. (3)

whenever a ~ x. <... <x. ~ band x.-. <; I, <;x" x, -x,_, < \
Oe(tk)for k = 1,..., n.

Proof of Theorem 2. (~) This half of the proof was suggested by an
argument in [7, p.66]. Let e > 0 be given. Let (cm)~=o be a strictly
decreasing sequence with Co = b and Iimm~oo cm = a. Since f is Riemann
integrable on [cz, b], there is a number YI such that 0 < YI ~

min(co - cl ' CI - cz) and

whenever Cz= Xo < ... < xn= Co and Xk- 1~ tk~ xk' x k - Xk_ 1 < YI for
k = 1,..., n. For m = 2, 3,... let Ym satisfy 0 < Ym ~ Cm- cm+ I' Ym~ Ym-l' and

whenever cm+ 1 = X o < ... < x n= cm_Z and Xk_1 ~ tk~ x k' Xk - Xk_ 1 < Ymfor
k= 1,... , n.

Now define JeCt) = Ym if Cm< t ~ cm_ I ' m ~ 1, so that t - J.(t) ~
t - cm+ cm+ I > cm+ I > a. Then Je(t) is nondecreasing on (a, b]. Since
limS-+a + f~ f = f~ f, there is a number S with a <S < b such that
II~ I - It II < e/2 whenever a < s <S. Define O.(a) = S - a.

Let a=xo<· .. <xn=b and Xk_l~tk~xk' Xk -Xk-l<tJ.(tk) for
k=I,... ,n. If tl>a, then XI-O.(tl)~tl-J.(tl»a=xO' so x1-XO >
J.(t l ) which is false. Hence t l = a, Je(tl) = S - a and XI < S (so n ~ 2).

We have

IQ1)- tl I(tk)(xk-xk- 1) I

~ /((f)- ((f)l+ 1~:lf)- tzf(tk)(Xk-Xk-l)l·
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The first difference on the right-hand side is <e/2. Consider the second
difference. For m = 1,2,... let N m be the set of integers k for which 2 ~ k ~ n
and tk E (cm, cm_I]' If m ~ 1 and k E N m, then

Hence if m ~ 2 and k E N m , then (with Yo = Co - c 1)

while if k E N I , then

Let m ~ 1. By Henstock's Lemma

Hence

1(( f) - tz f(tk)(Xk -Xk_ l)I= Itz ((k_/) - f(tk)(Xk -Xk-I)j

= I~I k~m ((k_/) - f(tk)(Xk - Xk_1)' ~ ~I e/2 m
+ 1 = e/2.

Thus

So (3) is satisfied with I = f~ f

(-¢=) Let a<s<b and let e>O. If s=xo <'" <xn=b and Xk_l~

tk~xk' Xk-Xk_1<J.(s) for k= I,...,n, then we have Xk-Xk_1<J.(tk),
k = 1,2'00" n, since J,(t) is nondecreasing. It is an elementary fact (cf. [5,
Theorem 1]) that there are points a = x _m < ... < X_I < X o = sand
t_m+I,· ..,to with Xk_l~tk~xk and Xk-Xk_ 1 <J.(tk) for k=-m+ I,
-m + 2'00" O. Hence

(4 )
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by Henstock's Lemma, which proves that f is Riemann integrable on [s, b I.
To show lims....a+ f~ f = I, let again e >°and let a < s <min(a + t:5 8/2(a), b).
Choose a =Xo< s =Xl < ... < x n = b with max2";;k<n(Xk - Xk_J) < t:5 8/2(s)
and set tk = x k _ J' k = 1,... , n. Then

II-t [ I~ II - tl [(tk)(Xk - Xk- l) I

+ I~2 f(tk)(Xk - xk_ J) - ( f I < (eI2) + (eI2) = e

by (3) and (4). This completes the proof of the theorem.

We now record some observations.

(a) Improper Riemann integrability of a real function f on (a, b I
(-00 < a < b < oo,f(a) =0) implies that for every e >0, t:5e<t) of Theorem 2
can be taken also to be continuous on (a, b]. In fact, given e > 0, refer to the
proof of Theorem 2. In the X, y plane consider the infinite polygonal line
PlP2 P3'" together with the point (a,S-a), where Pm=(cm-l'Ym),
m = 1,2,.... It is the graph of such a continuous function y = t:5 8(x).

(b) If [is a real function, improperly Riemann integrable on [a, b)
(-00 < a < b < 00), the analogue of Theorem 2 is valid with t:5 8(t) a nonin­
creasing function on [a, b).

(c) Analogues of Theorem 2 hold for improperly Riemann integrable
functions on infinite intervals (-00, b] or [a, 00). We state without proof the
result for [a, 00).

THEOREM 3. Let f be a real function on [a, 00), where -00 <a < 00.

Then f is improperly Riemann integrable on [a, 00) (i.e., f is Riemann
integrable on each [a, b], a <b < 00, and limb .... oo f~ f exists (finite» iff
there is a real number I with the following property: For each e >°there is a
positive nonincreasing [unction t:5eCt) on [a, 00) and a number B(e) > a such
that

whenever a = X o < ... < X n ' Xn >B(e) and X k- l ~ tk~ x k' Xk - X k- J < t:5.(tk)
for k = 1,..., n.

(d) Theorems 1 and 2 imply the (known) result [10, Theorem 1] that
a dominantly integraple function is improperly Riemann integrable on (0, 11·
Similarly, Section 3 and Theorem 3 imply the (known) result [1, p. 931; 2,
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p. 61 that a simply integrable function is improperly Riemann integrable on
1°,(0).

(e) By using interval-valued functions bet), a definition of generalized
Riemann integrability can be given which applies to both finite and infinite
limits of integration; cf. [7, pp. 18, 23J. It is straightforward to show the
equivalence of that definition to Definitions 1 and 3 above and to phrase the
results of the present paper in terms of such interval-valued functions.

(f) McShane [8, 9] has studied similar Riemann-type integrals.
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